Photodynamic Therapy – The Pragmatic Paradigm

Photodynamic Therapy – The Pragmatic Paradigm

Authors

  • Indranil Sarkar
  • Annaji Sreedhar
  • Padma R
  • Jagadish pai
  • Sachin Malagi
  • Radhika B
  • Vinesh Kamath

DOI:

https://doi.org/10.70284/njirm.v5i4.772

Keywords:

PDT, Singlet Oxygen, Photosensitizer, Implantology, Peri-implantitis, Osseointegration

Abstract

Photodynamic therapy (PDT), also known as photo-radiation therapy, phototherapy, or photo-chemotherapy, involves the use of a photoactive dye (photosensitizer) that is activated by exposure to light of a specific wavelength in the presence of oxygen. The transfer of energy from the activated photosensitizer to available oxygen results in the formation of toxic oxygen species, such as singlet oxygen and free radicals which damages proteins, lipids, nucleic acids and other cellular components.PDT has wide range of applications in Dentistry ranging from antimicrobial chemotherapy to the diagnosis & treatment of premalignant and malignant conditions. Its application in Periodontics represents a novel therapeutic approach in the management of oral biofilms with consequent alterations in plaque homeostasis. An improved post surgical healing with reduced periodontal inflammation and tissue damage are the hallmarks of PDT. Its scope has been extended in Implantology to promote osseointegration and to prevent peri-implantitis. With such myriad of applications PDT has a promising future depending on the interactions between clinical applications and technological innovations. The paper appraises the various scopes that PDT envisages beyond the horizon. [ Shreedhar A NJIRM 2014; 5(4) :72-81]

References

1. Raab O. The effect of fluorescent agents on infusoria. Z Biol 1900;39:524-6.
2. Ackroyd R, Kelty C, Brown N, Reed M. the history of photodetection and photodynamic therapy. Photochem photobiol 2001;74:656-69
3. von Tappeiner H. Zur kenntnis der lichtwirkenden (fluoreszierenden) Stoffe. Dtsch Med Wochen 1904: 1: 579–580.
4. Von Tappeiner H, Jodlbauer A. On the effect of photodynamic (fluorescent) substances on protozoa and enzymes (in German). Deutsch Arch Klin Medizin 1904;39:427-87.
5. Wilson M. Photolysis of oral bacteria and its potential use in the treatment of caries and
periodontal disease. J Appl Bacteriol 1993: 75: 299–306.
6. Allison RR, Baganto VS, Cuenca R, Downie GH, Sibata CH. The future of photodynamic therapy in oncology. Future Oncol 2006;2:53–71.
7. Sharwani A, Jerjes W, Salih V, MacRobert AJ, El-Maaytah M, Khalil HSM, et al.. Fluorescence spectroscopy combined with 5-aminolevulinic acid-induced protoporphyrin IX fluorescence in detecting oral premalignancy. J Photochem Photobiol B 2006: 83; 27-33.
8. K. Konopka and T. Goslinski. Photodynamic Therapy in Dentistry. J Dent Res 2007;2:694-707,
9. Jori G. Photodynamic therapy of microbial infections: State of the art and perspectives. J Environ Pathol Toxicol Oncol 2006;25:505-20.
10. Ochsner M. Photophysical and photobiological processes in the photodynamic therapy of tumours. J Photochem Photobiol B 1997: 39: 1–18
11. Chabrier-Rosello´ Y, Foster TH, Perez-Nazario N, Mitra S, Haidaris CG. Sensitivity of Candida albicans germ tubes and biofilms to photofrin-mediated phototoxicity. Antimicrob Agents Chemother 2005: 49: 4288–4295.
12. Featherstone JDB. The continuum of dental caries – evidence for a dynamic disease process. J Dent Res 2004: 83C:C39–C42.
13. Wilson M. Lethal photosensitisation of oral bacteria and its potential application in the photodynamic therapy of oral infections. Photochem Photobiol Sci 2004: 3: 412–418.
14. Bevilacqua IM, Nicolau RA, Khouri S, Brugnera A Jr,Teodoro GR, Zangaro RA, Pacheco MT. The impact of photodynamic therapy on the viability of Streptococcus mutans in a planktonic culture. Photomed Laser Surg 2007:25: 513–518.
15. Burns T, Wilson M, Pearson GJ. Sensitisation of cariogenic bacteria to killing by light from a helium-neon laser. J Med Microbiol 1993: 38: 401–405.
16. Burns T, Wilson M, Pearson GJ. Killing of cariogenic bacteria by light from a gallium aluminium arsenide diode laser. J Dent 1994: 22: 273–278.
17. Williams JA, Pearson GJ, Colles MJ, Wilson M. The effect of variable energy input from a novel light source on the photoactivatedbactericidal action of toluidine blue O on Streptococcus mutans. Caries Res 2003: 37: 190–193.
18. Giusti JS, Santos-Pinto L, Pizzolito AC, Helmerson K, Carvalho-Filho E, Kurachi C, Bagnato VS. Antimicrobial photodynamic action on dentin using a light-emitting diode light source. Photomed Laser Surg 2008: 26: 281–287.
19. Zanin IC, Goncalves RB, Junior AB, Hope CK, Pratten J. Susceptibility of Streptococcus mutans biofilms to photodynamic therapy: an in vitro study. J Antimicrob Chemother 2005: 56: 324–330.
20. Zanin IC, Lobo MM, Rodrigues LK, Pimenta LA, Hofling JF, Goncalves RB. Photosensitization of in vitro biofilms by toluidine blue O combined with a light-emitting diode. Eur J Oral Sci 2006: 114: 64–69.
21. Paulino TP, Ribeiro KF, Thedei G Jr, Tedesco AC, Ciancaglini P. Use of hand held photopolymerizer to photoinactivate Streptococcus mutans. Arch Oral Biol 2005: 50: 353–359.
22. Burns T, Wilson M, Pearson GJ. Effect of dentine and collagen on the lethal photosensitization of Streptococcus mutans. Caries Res 1995: 29: 192–197.
23. Wilson M, Burns T, Pratten J. Killing of Streptococcus sanguis in biofilms using a light-activated antimicrobial agent. J Antimicrob Chemother 1996: 37: 377–381.
24. Wilson M, Burns T, Pratten J, Pearson GJ. Bacteria in supragingival plaque samples can be killed by low-power laser light in the presence of a photosensitizer. J Appl Bacteriol 1995: 78: 569–574.
25. Metcalf D, Robinson C, Devine D, Wood S. Enhancement of erythrosine-mediated photodynamic therapy of Streptococcus mutans biofilms by light fractionation. J Antimicrob Chemother 2006: 58: 190–192.
26. Wood S, Metcalf D, Devine D, Robinson C. Erythrosine is a potential photosensitizer for the photodynamic therapy of oral plaque biofilms. J Antimicrob Chemother 2006: 57:680–684.
27. Ramage G, Tomsett K, Wickes BL, Lopez-Ribot JL, Redding SW. Denture stomatitis: a role for
Candida biofilms. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2004: 98:53–59.
28. Jarvensivu A, Hietanen J, Rautemaa R, Sorsa T, Richardson M. Candida yeasts in chronic periodontitis tissues and subgingival microbial biofilms in vivo. Oral Dis 2004: 10: 106–112
29. Kojic EM, Darouiche RO. Candida infections of medical devices. Clin Microbiol Rev 2004: 17: 255–267.
30. Jabra-Rizk MA, Falkler WA, Meiller TF. Fungal biofilms and drug resistance. Emerg Infect Dis 2004: 10: 14–19.
31. Bliss JM, Bigelow CE, Foster TH, Haidaris CG. Susceptibility of Candida species to photodynamic effects of photofrin. Antimicrob Agents Chemother 2004: 48: 2000–2006.
32. Cormick MP, Alvarez MG, Rovera M, Durantini EN. Photodynamic inactivation of Candida albicans sensitized by tri- and tetra-cationic porphyrin derivatives. Eur J Med Chem 2009: 44: 1592–1599.
33. Giroldo LM, Felipe MP, de Oliveira MA, Munin E, Alves LP, Costa MS. Photodynamic antimicrobial chemotherapy (PACT) with methylene blue increases membrane permeability in Candida albicans. Lasers Med Sci 2009: 24:109–112.
34. Munin E, Giroldo LM, Alves LP, Costa MS. Study of germ tube formation by Candida albicans after photodynamic antimicrobial chemotherapy (PACT). J Photochem Photobiol B 2007: 88: 16–20.
35. So CW, Tsang PW, Lo PC, Seneviratne CJ, Samaranayake LP, Fong WP. Photodynamic inactivation of Candida albicans by BAM-SiPc. Mycoses 2010: 53: 215–220.
36. Souza RC, Junqueira JC, Rossoni RD, Pereira CA, Munin E, Jorge AO. Comparison of the photodynamic fungicidal efficacy of methylene blue, toluidine blue, malachite green and low-power laser irradiation alone against Candida albicans. Lasers Med Sci 2010: 25: 385–389.
37. Souza SC, Junqueira JC, Balducci I, Koga-Ito CY, Munin E, Jorge AO. Photosensitization of different Candida species by low power laser light. J Photochem Photobiol B 2006:83: 34–38.
38. Wilson M, Mia N. Sensitisation of Candida albicans to killing by low-power laser light. J Oral Pathol Med 1993:22: 354–357.
39. Chabrier-Rosello´ Y, Foster TH, Perez-Nazario N, Mitra S, Haidaris CG. Sensitivity of Candida albicans germ tubes and biofilms to photofrin-mediated phototoxicity. Antimicrob Agents Chemother 2005: 49: 4288–4295.
40. Donnelly RF, McCarron PA, Tunney MM, David Woolfson A. Potential of photodynamic therapy in treatment of fungal infections of the mouth. Design and characterisation of a mucoadhesive patch containing toluidine blue O. J Photochem Photobiol B 2007: 86: 59–69.
41. Ceballos-Salobrena A, Gaitan-Cepeda LA, Ceballos-Garcia L, Lezama-Del Valle D. Oral lesions in HIV ⁄ AIDS patients undergoing highly active antiretroviral treatment including protease inhibitors: a new face of oral AIDS? AIDS Patient Care STDS 2000: 14: 627–635.
42. Maver-Biscanin M, Mravak-Stipetic M, Jerolimov V. Effect of low-level laser therapy on Candida albicans growth in patients with denture stomatitis. Photomed Laser Surg 2005: 23: 328–332.
43. Kroes I, Lepp PW, Relman DA. Bacterial diversity within the human subgingival crevice. Proc Natl Acad Sci U S A 1999: 96: 14547–14552.
44. Kumar PS, Griffen AL, Moeschberger ML, Leys EJ. Identification of candidate periodontal pathogens and beneficial species by quantitative 16S clonal analysis. J Clin Microbiol 2005: 43: 3944–3955.
45. Sakamoto M, Umeda M, Benno Y. Molecular analysis of human oral microbiota. J Periodontal Res 2005: 40: 277–285.
46. Anderson GG, O_Toole GA. Innate and induced resistance mechanisms of bacterial biofilms. Curr Top Microbiol Immunol 2008: 322: 85–105.
47. del Pozo JL, Patel R. The challenge of treating biofilmassociated bacterial infections. Clin Pharmacol Ther 2007:82: 204–209.
48. Fux CA, Costerton JW, Stewart PS, Stoodley P. Survival strategies of infectious biofilms. Trends Microbiol 2005: 13:34–40.
49. Wilson M. Lethal photosensitisation of oral bacteria and its potential application in the photodynamic therapy of oral infections. Photochem Photobiol Sci 2004: 3: 412–418.
50. Wilson M. Photolysis of oral bacteria and its potential use in the treatment of caries and
periodontal disease. J Appl Bacteriol 1993: 75: 299–306.
51. Bhatti M, MacRobert A, Henderson B, Wilson M. Exposure of Porphyromonas gingivalis to red light in the presence of the light-activated antimicrobial agent toluidine blue decreases membrane fluidity. Curr Microbiol 2002: 45: 118–122.
52. Bhatti M, MacRobert A, Meghji S, Henderson B, Wilson M. Effect of dosimetric and physiological factors on the lethal photosensitization of Porphyromonas gingivalis in vitro. Photochem Photobiol 1997: 65: 1026–1031.
53. Chan Y, Lai CH. Bactericidal effects of different laser wavelengths on periodontopathic germs in photodynamic therapy. Lasers Med Sci 2003: 18: 51–55.
54. Soukos NS, Ximenez-Fyvie LA, Hamblin MR, Socransky SS, Hasan T. Targeted antimicrobial photochemotherapy. Antimicrob Agents Chemother 1998: 42: 2595–2601.
55. Sarkar S, Wilson M. Lethal photosensitization of bacteria in subgingival plaque from patients with chronic periodontitis. J Periodontal Res 1993: 28: 204–210.
56. Wilson M, Burns T, Pratten J, Pearson GJ. Bacteria in supragingival plaque samples can be killed by low-power laser light in the presence of a photosensitizer. J Appl Bacteriol 1995: 78: 569–574.
57. Dobson J, Wilson M. Sensitization of oral bacteria in biofilms to killing by light from a low-power laser. Arch Oral Biol 1992: 37: 883–887.
58. Wood S, Nattress B, Kirkham J, Shore R, Brookes S, Griffiths J, Robinson C. An in vitro study of the use of photodynamic therapy for the treatment of natural oral plaque biofilms formed in vivo. J Photochem Photobiol B 1999: 50: 1–7.
59. Matevski D, Weersink R, Tenenbaum HC, Wilson B, Ellen RP, Lepine G. Lethal photosensitization of periodontal pathogens by a red-filtered xenon lamp in vitro. J Periodontal Res 2003: 38: 428–435.
60. Qin Y, Luan X, Bi L, He G, Bai X, Zhou C, Zhang Z. Toluidine blue-mediated photoinactivation of periodontal pathogens from supragingival plaques. Lasers Med Sci 2008: 23: 49–54.
61. Soukos NS, Mulholland SE, Socransky SS, Doukas AG. Photodestruction of human dental plaque bacteria:enhancement of the photodynamic effect by photomechanical waves in an oral biofilm model. Lasers Surg Med 2003: 33: 161–168.
62. Soukos NS, Socransky SS, Mulholland SE, Lee S, Doukas AG. Photomechanical drug delivery into bacterial biofilms. Pharm Res 2000: 17: 405–409.
63. Mu¨ ller P, Guggenheim B, Schmidlin PR. Efficacy of gasiform ozone and photodynamic therapy on a multispecies oral biofilm in vitro. Eur J Oral Sci 2007: 115: 77–80.
64. Ogura M, Blissett R, Ruggiero K, Som S, Goodson J, Kent R, Doukas A, Soukos N. Photomechanical wave-assisted molecular delivery in oral biofilms. World J Microbiol Biotechnol 2007: 23: 1637–1646.
65. O_Neill JF, Hope CK, Wilson M. Oral bacteria in multispecies biofilms can be killed by red light in the presence of toluidine blue. Lasers Surg Med 2002: 31: 86–90.
66. Fontana CR, Abernethy AD, Som S, Ruggiero K, Doucette S, Marcantonio RC, Boussios CI, Kent R, Goodson JM,Tanner ACR, Soukos NS. The antibacterial effect of photodynamic therapy in dental plaque-derived biofilms. J Periodontal Res 2009: 44: 751–759.
67. Tegos GP, Hamblin MR. Phenothiazinium antimicrobial photosensitizers are substrates of bacterial multidrug resistance pumps. Antimicrob Agents Chemother 2006: 50: 196–203.
68. Foley I, Gilbert P. Antibiotic resistance of biofilms. Biofouling 1996: 10: 331–346.
69. Brown MR, Allison DG, Gilbert P. Resistance of bacterial biofilms to antibiotics: a growth-rate related effect? J Antimicrob Chemother 1988: 22: 777–780.
70. Stewart PS, Grab L, Diemer JA. Analysis of biocide transport limitation in an artificial biofilm system. J Appl Microbiol 1998: 85: 495–500.
71. Stewart PS. Diffusion in biofilms. J Bacteriol 2003: 185:1485–1491.
72. Rani SA, Pitts B, Stewart PS. Rapid diffusion of fluorescent tracers into Staphylococcus epidermidis biofilms visualized by time lapse
microscopy. Antimicrob Agents Chemother 2005: 49: 728–732.
73. Qian Z, Sagers RD, Pitt WG. The effect of ultrasonic frequency upon enhanced killing of P. aeruginosa biofilms. Ann Biomed Eng 1997: 25: 69–76.
74. Costerton JW, Ellis B, Lam K, Johnson F, Khoury AE. Mechanism of electrical enhancement of efficacy of antibiotics in killing biofilm bacteria. Antimicrob Agents Chemother 1994: 38: 2803–2809.
75. Carmen JC, Roeder BL, Nelson JL, Ogilvie RL, Robison RA, Schaalje GB, Pitt WG. Treatment of biofilm infections on implants with low-frequency ultrasound and antibiotics. Am J Infect Control 2005: 33: 78–82.
76. Caubet R, Pedarros-Caubet F, Chu M, Freye E, de Belem Rodrigues M, Moreau JM, Ellison WJ. A radio frequency electric current enhances antibiotic efficacy against bacterial biofilms. Antimicrob Agents Chemother 2004: 48:4662–4664.
77. Konan YN, Gurny R, Allemann E. State of the art in the delivery of photosensitizers for photodynamic therapy. J Photochem Photobiol B 2002: 66: 89–106.
78. Lee S, McAuliffe DJ, Flotte TJ, Kollias N, Doukas AG. Photomechanical transdermal delivery: the effect of laser confinement. Lasers Surg Med 2001: 28: 344–347.
79. Mulholland SE, Lee S, McAuliffe DJ, Doukas AG. Cell loading with laser-generated stress waves: the role of the stress gradient. Pharm Res 1999: 16: 514–518.
80. Ko¨merik N, Nakanishi H, MacRobert AJ, Henderson B, Speight P, Wilson M. In vivo killing of Porphyromonas gingivalis by toluidine blue-mediated photosensitization in an animal model. Antimicrob Agents Chemother 2003:47: 932–940.
81. de Almeida JM, Theodoro LH, Bosco AF, Nagata MJ, Oshiiwa M, Garcia VG. Influence of photodynamic therapy on the development of ligature-induced periodontitis in rats. J Periodontol 2007: 78: 566–575.
82. de Almeida JM, Theodoro LH, Bosco AF, Nagata MJ, Oshiiwa M, Garcia VG. In vivo effect of photodynamic therapy on periodontal bone loss in dental furcations. J Periodontol 2008: 79: 1081–1088.
de Almeida JM, Theodoro LH, Bosco AF, Nagata MJ, Bonfante S, Garcia VG. Treatment of experimental periodontal disease by photodynamic therapy in rats with diabetes. J Periodontol 2008: 79: 2156–2165.
84. Fernandes LA, de Almeida JM, Theodoro LH, Bosco AF, Nagata MJ, Martins TM, Okamoto T, Garcia VG. Treatment of experimental periodontal disease by photodynamic therapy in immunosuppressed rats. J Clin Periodontol 2009: 36: 219–228.
85. Andersen R, Loebel N, Hammond D, Wilson M. Treatment of periodontal disease by photodisinfection compared to scaling and root planing. J Clin Dent 2007: 18: 34–38.
86. Braun A, Dehn C, Krause F, Jepsen S. Short-term clinical effects of adjunctive antimicrobial photodynamic therapy in periodontal treatment: a randomized clinical trial. J Clin Periodontol 2008: 35: 877–884.
87. Cerveny KE, DePaola A, Duckworth DH, Gulig PA. Phage therapy of local and systemic disease caused by Vibrio vulnificus in iron-dextran-treated mice. Infect Immun 2002: 70: 6251–6262.
88. Sajjan US, Tran LT, Sole N, Rovaldi C, Akiyama A, Friden PM, Forstner JF, Rothstein DM. P-113D, an antimicrobial peptide active against Pseudomonas aeruginosa, retains activity in the presence of sputum from cystic fibrosis patients. Antimicrob Agents Chemother 2001: 45: 3437–3444.
89. Soukos NS, Som S, Abernethy AD, Ruggiero K, Dunham J, Lee C, Doukas AG, Goodson JM. Phototargeting oral blackpigmented bacteria. Antimicrob Agents Chemother 2005:49: 1391–1396.
90. Feuerstein O, Persman N, Weiss EI. Phototoxic effect of visible light on Porphyromonas gingivalis and Fusobacterium nucleatum: an in vitro study. Photochem Photobiol 2004: 80: 412–415.
91. Fukui M, Yoshioka M, Satomura K, Nakanishi H, Nagayama M. Specific-wavelength visible light irradiation inhibits bacterial growth of Porphyromonas gingivalis. J Periodontal Res 2008: 43: 174–178.
92. Henry CA, Dyer B, Wagner M, Judy M, Matthews JL. Phototoxicity of argon laser irradiation on biofilms of Porphyromonas and
Prevotella species. J Photochem Photobiol B 1996: 34: 123–128.
93. Henry CA, Judy M, Dyer B, Wagner M, Matthews JL. Sensitivity of Porphyromonas and Prevotella species in liquid media to argon laser. Photochem Photobiol 1995: 61:410–413.
94. Ko¨nig K, Teschke M, Sigusch B, Glockmann E, Eick S, Pfister W. Red light kills bacteria via photodynamic action. Cell Mol Biol (Noisy-le-grand) 2000: 46: 1297–1303.
95. Sterer N, Feuerstein O. Effect of visible light on malodour production by mixed oral microflora. J Med Microbiol 2005: 54: 1225–1229.
96. Danielsen B, Wilton JM, Baelum V, Johnson NW, Fejerskov O. Serum immunoglobulin G antibodies to Porphyromonas gingivalis, Prevotella intermedia, Fusobacterium nucleatum and Streptococcus sanguis during experimental gingivitis in young adults. Oral Microbiol Immunol 1993:8: 154–160.
97. Goodson JM, Palys MD, Socransky SS. Experimental gingivitis:health to disease without ‘‘red complex’’ bacterial proliferation. J Dent Res 2003: 82A: abstract# 583.
98. Tanner A. Microbial etiology of periodontal diseases. Where are we? Where are we going? Curr Opin Dent 1992:2: 12–24.
99. Nakano Y, Yoshimura M, Koga T. Methyl mercaptan production by periodontal bacteria. Int Dent J 2002: 52(Suppl 3): 217–220.
100. Tyrrell KL, Citron DM, Warren YA, Nachnani S, Goldstein EJ. Anaerobic bacteria cultured from the tongue dorsum of subjects with oral malodor. Anaerobe 2003: 9: 243–246.
101. Washio J, Sato T, Koseki T, Takahashi N. Hydrogen sulfideproducing bacteria in tongue biofilm and their relationship with oral malodour. J Med Microbiol 2005: 54:889–895.
102. Moore WE, Moore LV. The bacteria of periodontal diseases. Periodontol 2000 1994: 5: 66–77.
103. Socransky SS, Haffajee AD, Cugini MA, Smith C, Kent RL Jr. Microbial complexes in subgingival plaque. J Clin Periodontol 1998: 25: 134–144.
104. Meurman JH, Sanz M, Janket SJ. Oral health, atherosclerosis, and cardiovascular disease. Crit Rev Oral Biol Med 2004: 15: 403–413.
105. Chiu B. Multiple infections in carotid atherosclerotic plaques. Am Heart J 1999: 138: S534–S536.
106. Haraszthy VI, Zambon JJ, Trevisan M, Zeid M, Genco RJ. Identification of periodontal pathogens in atheromatous plaques. J Periodontol 2000: 71: 1554–1560.
107. Taylor-Robinson D, Aduse-Opoku J, Sayed P, Slaney JM, Thomas BJ, Curtis MA. Oro-dental bacteria in various atherosclerotic arteries. Eur J Clin Microbiol Infect Dis 2002: 21: 755–757.
108. Embleton ML, Nair SP, Cookson BD, Wilson M. Selective lethal photosensitization of methicillin-resistant Staphylococcus aureus using an IgG-tin (IV) chlorin e6 conjugate. J Antimicrob Chemother 2002: 50: 857–864.
109. Embleton ML, Nair SP, Cookson BD, Wilson M. Antibodydirected photodynamic therapy of methicillin resistant Staphylococcus aureus. Microb Drug Resist 2004: 10: 92–97.
110. Bhatti M, MacRobert A, Henderson B, Shepherd P, Cridland J, Wilson M. Antibody-targeted lethal photosensitization of Porphyromonas gingivalis. Antimicrob Agents Chemother 2000: 44: 2615–2618.
111. Embleton ML, Nair SP, Heywood W, Menon DC, Cookson BD, Wilson M. Development of a novel targeting system for lethal photosensitization of antibiotic-resistant strains of Staphylococcus aureus. Antimicrob Agents Chemother 2005: 49: 3690–3696.
112. Hope CK, Packer S, Wilson M, Nair SP. The inability of a bacteriophage to infect Staphylococcus aureus does not prevent it from specifically delivering a photosensitizer to the bacterium enabling its lethal photosensitization. J Antimicrob Chemother 2009: 64: 59–61.
113. Zharov VP, Mercer KE, Galitovskaya EN, Smeltzer MS. Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles. Biophys J 2006: 90: 619–627.

Downloads

Published

2018-01-04

How to Cite

Sarkar, I., Sreedhar, A., R, P., pai, J., Malagi, S., B, R., & Kamath, V. (2018). Photodynamic Therapy – The Pragmatic Paradigm: Photodynamic Therapy – The Pragmatic Paradigm. National Journal of Integrated Research in Medicine, 5(4), 73–82. https://doi.org/10.70284/njirm.v5i4.772

Issue

Section

Review Article