Quercetin- A Natural Antioxidant From Onion May Be Beneficial In The Management Of Osteoporosis

Quercetin- A Natural Antioxidant From Onion May Be Beneficial In The Management Of Osteoporosis

Authors

  • Faiza Ismail
  • Naiyer Asif
  • Abbas Ali Mahdi
  • Najmul Islam

Keywords:

Quercetin, glutathione peroxidise (GPx) activity, GSH, TNF-α, natural antioxidant

Abstract

Background: Bone is a living rigid connective tissue. The main bone degrading disease is osteoporosis that involves the silent decrease in bone strength, accompanied by fragile bone leading to fractures. ROS and TNF-α levels when starts augmenting each other levels synergistically, leads to an increase in bone markers and accelerated osteoclasts activity and hence osteoporosis. Methods: Effects of quercetin was evaluated in the management of osteoporosis by employing cell culture study, ELISA and determination of GPx activity as well as GSH assay. Elevated levels of ROS were arrested by natural antioxidant quercetin, which in turn controls osteoporosis. Results: We report the augmented levels of TNF-α mRNA expression in osteoporosis patients which are in accordance to our earlier reports. Quercetin decreased osteoclasts differentiation (p<0.001). Also, at both the gene and protein levels, the levels of TNF-α were also found to be reduced. The results show the suppression in TNF-α mRNA expression with 20-25μg/ml of quercetin in mononuclear cells of patients with osteoporosis. Similar observations at the protein level substantiated the above data. Furthermore, we observed the antioxidant induced amelioration in GPx activity and GSH levels coupled with down regulation of TNF-α in cells of osteoporotic patients, thereby, exhibiting the possible chemo preventive property of quercetin in osteoporosis. Conclusion: Thus we may hope and conclude that the side effects of various drugs and therapies involved in osteoporosis may be overcome by the use of this natural antioxidant ie. Quercetin. [Faiza I NJIRM 2017; 8(2):110-117]

References

1. Kai Luo, Souzhi Ma, Jianbin Guo,Yongling Huang,Fuhua Yan, and Yin Xiao. Association between Postmenopausal Osteoporosis and Experimental Periodontitis. BioMed Research International. 2014; 7 pages.
2. A.M. Malutan, N. Costin, R. Ciortea, C.M. Dragos, D. Mihu, G. Dorin Bone Mineral Density and Proinflammatory Cytokines (IL-1β and TNFα) in
Menopause. General Endocrinology, 2014; X(2):169-180.
3. Lee, S.Y., K.S. Lee, S.H. Yi, S.H. Kook, and J.C. Lee. 2013. Acteoside suppresses RANKL-mediated osteoclastogenesis by inhibiting c-Fos induction and NF-kappa B pathway and attenuating ROS production. PloS one. 2013; 8:e80873.
4. Korachich GB, Mishra OP. Lipid peroxidation in rat brain cortical slices as measured by the thiobarbituric acid test. J Neurochem. 1980; 35:1449–1452.
5. Baek, K. H., Oh, K. W., Lee, W. Y., Lee, S. S., Kim, M. K., Kwon, H. S., et al. Association of oxidative stress with postmenopausal osteoporosis and the effects of hydrogen peroxide on osteoclast formation in human bone marrow cell cultures. Calcified Tissue International. 2010; 87(3):226-235.
6. Halleen, J., S. Tiitinen, H. Ylipahkala, K. Fagerlund, and H. Väänänen. Tartrate-resistant acid phosphatase 5b (TRACP 5b) as a marker of bone resorption. Clin Lab. 2006; 52:499-509.
7. Choi, E.M., Koo, S.J. Effects of soybean ethanol extract on the cell survival and oxidative stress in osteoblastic cells. Phytother Res. 2003; 17:627-632.
8. Gallagher, J.C., Satpathy, R., Rafferty, K., Haynatzka, V. The effect of soy protein isolate on bone metabolism. Menopause. 2004; 11:290-298.
9. Tylavsky FA, Holliday K, Danish R, Womack C, Norwood J, Carbone L. Fruit and vegetable intakes are an independent predictor of bone size in early pubertal children. Am J Clin Nutr. 2004; 79:311–317.
10. Macdonald HM, New SA, Golden MH, Campbell MK, Reid DM. Nutritional associations with bone loss during the menopausal transition: evidence of a beneficial effect of calcium, alcohol, and fruit and vegetable nutrients and of a detrimental effect of fatty acids. Am J Clin Nutr. 2004; 79:155– 65.
11. New SA, Robins SP, Campbell MK, Martin JC, Garton MJ, Bolton- Smith C, et al. Dietary influences on bone mass and bone metabolism: further evidence of a positive link between fruit and vegetable consumption and bone health. Am J Clin Nutr. 2000; 71:142–51.
12. Hertog MG, Feskens EJ, Hollman PC, Katan MB, Kromhout D. Dietary antioxidant flavonoids andrisk of coronary heart disease. The Zutphen Elderly study. Lancet. 1993; 342:1007-1011.
13. Manach C, Scalbert A, Morand C, Rémesy C, Jimenez L: Polyphenols: food sources and bioavailability. Am J Clin Nutr. 2004; 79:727–747.
14. J. Gonzalez-Gallego, M. V. Garcia-Mediavilla, S. Sanchez-Campos, and M. J. Tunon, Fruit polyphenols, immunity and inflammation. British Journal of Nutrition. 2011; 104(3):S15–S27.
15. G. R. Barcelos, D. Grotto, J. M. Serpeloni et al., “Protective properties of quercetin against DNA damage and oxidative stress induced by methylmercury in rats,” Archives of Toxicology. 2011; 85(9):1151-1157.
16. A.Wattel, S. Kamel, C. Prouillet, et al. Flavonoid quercetin decreases osteoclastic differentiation induced by RANKL via a mechanism involving NF kappa B and AP-1. Journal of Cellular Biochemistry, 2004; 92(2):285-295.
17. T. W. Nam, C. I. Yoo, H. T. Kim, C. H. Kwon, J. Y. Park, and Y. K. Kim, The flavonoid quercetin induces apoptosis and inhibits migration through a MAPK-dependent mechanism in osteoblasts. Journal of Bone and Mineral Metabolism. 2008; 26(6):551–560.
18. M. Notoya, Y. Tsukamoto, H. Nishimura et al. Quercetin, a flavonoid, inhibits the proliferation, differentiation, and mineralization of osteoblasts in vitro. European Journal of Pharmacology. 2004; 485(1-3):89–96.
19. C. Prouillet, J. C. Maziere, C. Maziere, A. Wattel, M. Brazier, and S. Kamel, Stimulatory effect of naturally occurring flavonols quercetin and kaempferol on alkaline phosphatase activity in MG-63 human osteoblasts through ERK and estrogen receptor pathway. Biochemical Pharmacology. 2004; 67(7):1307-1313.
20. M. J. Laughton, B. Halliwell, P. J. Evans, and J. R. S. Hoult. Antioxidant and pro-oxidant actions of the plant phenolics quercetin, gossypol and myricetin. Effects on lipid peroxidation, hydroxyl radical generation and bleomycin-dependent damage to DNA. Biochemical Pharmacology. 1989; 38(17):2859–2865, 1989.
21. Harborne J.B., ed., The Flavonoids, Advances in Research Since 1986. Chapman & Hall, London. 1994; 378–382.
22. Williams Ch.A., Grayer R.J., Anthocyanins and other flavonoids. Nat. Prod. Rep. 2004; 21:539–573.
23. Karl F. Braun, Sabrina Ehnert, Thomas Freude, José T. Egaña, Thilo L. Schenck, Arne Buchholz, Andreas Schmitt, Sebastian Siebenlist, Lilianna Schyschka, Markus Neumaier, Ulrich Stöckle, and Andreas K. Nussler, The Scientific World journal. 2011; 11:2348–2357.
24. Hasan, N., Yusuf, N., Toossi, Z. and Islam, N. Suppression of Mycobacterium tuberculosis induced reactive oxygen species (ROS) and TNF-alpha expression in human monocytes by allicin. FEBS Letters. 2006; 580(10):2517-2522.
25. Islam, N., Kanost, A. R., Teixeira, L., Johnson, J., Hejal, R., Aung, H, Wilkinson, R. J., Hirsch, C. S., Toossi, Z. The role of cellular activation and tumor necrosis factor (TNF-alpha) in the early expression of M. tuberculosis 85B mRNA in human alveolar macrophages. The Journal of Infectious Diseases. 2004; 190(2):341-351.
26. Hasan, W., Ahmad, S., Thakur, H., Abbas, M., Mahdi, A. A. and Islam, N. In vitro regulation of osteoclast generation: A cost-effective strategy to combat osteoporosis with natural antioxidants and polyphenols like EGCG. Eur. Acad. Res. 2014; 2(3): 3605-3626.
27. Hasan, W., Ahmad, S., Thakur, H., Salman, K. A., Abbas, M., Mahdi, A. A. and Islam, N. Epigallocatechin-3-gallate (EGCG), A Polyphenol and Natural Anti- Oxidant, Down Regulates Multinucleated Osteoclasts. W.J. Biol. Med. Sci. 2014; 1(2): 63-72.
28. Faust, J., Lacey, D. L., Hunt, P., Burgess, T. L., Scully, S., Van, G., Eli, A., Qian, Y. and Shalhoub, V. Osteoclast markers accumulate on cells developing from human peripheral blood mononuclear precursors. Journal of Cellular Biochemistry.1999; 72(1):67-80.
29. Buckley, K. A., Chan, B. Y. Y., Fraser, W. D. and Gallagher, J. A. Human osteoclast culture from peripheral blood monocytes: phenotypic characterization and quantitation of resorption. Methods in Molecular Medicine. 2005; 107: 55–68.
30. Hasan, N., Yusuf, N., Toossi, Z. And Islam, N. Suppression of Mycobacterium tuberculosis induced reactive oxygen species (ROS) and TNF-α mRNA expression in human monocytes by allicin. FEBS Lett. 2006; 580(10): 2517-2522.
31. Hasan, N., Siddiqui, M. U., Toossi, Z., Khan, S., Iqbal, J. and Islam, N. Allicin-induced suppression of Mycobacterium tuberculosis 85B mRNA in human monocytes. 2006; BBRC. 355(2): 471-476.32. Islam, N., Kanost, A.R., Teixeira, L., Johnson, J., Hejal, R., Aung, H., Wilkinson, R.J., Hirsch, C.S. and Toossi, Z. Role of Cellular Activation and Tumor Necrosis Factor—α in the Early Expression of Mycobacterium tuberculosis 85B mRNA in Human Alveolar Macrophages. J. Infect. Dis. 2004; 190(2): 341-351.
33. Islam, S., Islam, N., Kermode, T., Johnstone, B., Moskowitz, R. W., Goldberg, V. M., Mukhtar, H., Melamud, C. L., Haqqi, T. M., et al. Activation of caspase-3 in human chondrosarcoma cells by tumor necrosis factor- and α epigallocatechin-3-gallate in vitro. Biochemical and Biophysical Research Communications. 2000; 270(3):793-797.
34. Mohandas J., Marshall J.J., Duggin G.G., Horvath J.S., Tiller D.D., Differential distribution of glutathione and glutathione-related enzymes in rabbit kidney: possible implications in analgesic nephropathy. Cancer Res. 1984; 44:5086–5091.
35. Anderson, M. E., Powrie, F., Puri, R. N. & Meister, A. Arch. Biochem. Biophys. 1985; 239:538-548. Arjmandi, B.H., Alekel, L., Hollis, B.W., Amin, D., Stacewicz-Sapuntzakis, M., Guo, P., Kukreja, S.C. Dietary soybean protein prevents bone loss in an ovariectomized rat model of osteoporosis. J. Nutr. 1996; 126:161-167.
36. Baek, K. H., Oh, K. W., Lee, W. Y., Lee, S. S., Kim, M. K., Kwon, H. S., et al. Association of oxidative stress with postmenopausal osteoporosis and the effects of hydrogen peroxide on osteoclast formation in human bone marrow cell cultures. Calcified Tissue International. 2010; 87(3):226-235.
37. Basu, S., Michaelsson, K., Olofsson, H., Johansson, S., & Melhus, H. (2001). Association between oxidative stress and bone mineral density. Biochem Biophys Res Commun. 2001; 288(1):275-279.
38. Rossouw, J.E., G.L. Anderson, R.L. Prentice, A.Z. LaCroix, C. Kooperberg, M.L. Stefanick, R.D. Jackson, S.A. Beresford, B.V. Howard, K.C. Johnson, J.M. Kotchen, J. Ockene, and I. Writing Group for the Women's Health Initiative. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results From the Women's Health Initiative randomized controlled trial. Jama. 2002; 288:321-333.
39. Arjmandi, B.H., Alekel, L., Hollis, B.W., Amin, D., Stacewicz-Sapuntzakis, M., Guo, P., Kukreja, S.C. Dietary soybean protein prevents bone loss in an
ovariectomized rat model of osteoporosis. J. Nutr. 1996; 126:161–167.
40. Wein, M. N., Jones, D. C. and Glimcher, L. H. Turning down the system: Counter-regulatory mechanisms in bone and adaptive immunity. Immunological Reviews. 2005; 208:66–79.

Downloads

Published

2018-02-01

How to Cite

Ismail, F., Asif, N., Mahdi, A. A., & Islam, N. (2018). Quercetin- A Natural Antioxidant From Onion May Be Beneficial In The Management Of Osteoporosis: Quercetin- A Natural Antioxidant From Onion May Be Beneficial In The Management Of Osteoporosis. National Journal of Integrated Research in Medicine, 8(2), 110–117. Retrieved from http://nicpd.ac.in/ojs-/index.php/njirm/article/view/1216

Issue

Section

Original Articles