Detection of Metallo-Beta-Lactamase Enzymes Producing Pseudomonas Aeruginosa Isolated from Various Clinical Samples.
Metallo-Beta-Lactamase Producing Pseudomonas Aeruginosa
DOI:
https://doi.org/10.70284/njirm.v3i4.2059Keywords:
Metallo-beta (β)-lactamase, Nosocomial MBL, Carbapenems, disc potentiation test, EDTAAbstract
AmpC beta (β)-lactamase, Extended Spectrum (β)-lactamase (ESBL) and Metallo beta (β)-lactamase (MBL) enzymes. Nosocomial infections by Pseudomonas aeruginosa are escalating and importantly the production of MBL is a matter of concern. Carbapenems, being the most potent and reserved drug for treating the infections cause by multi-drug resistant bacteria especially Pseudomonas spp is under threat due to the emergence of MBL producing Pseudomonas aeruginosa. Thus, the present study was undertaken to detect MBL producing Psedumonas aeruginosa isolated from different clinical samples of hospitalized patient. Methods: Psedumonas aeruginosa strains were obtained by standard isolation and identification techniques from various clinical samples of hospital. Strains were then subjected to susceptibility testing for anti-pseudomonas drugs as per Clinical and Laboratory Standards Institute (CLSI) guidelines (year 2011). Carbapenems resistant strains were selected for the detection of MBL enzyme production by disc potentiation test. Production of MBL was confirmed by enhancement of inhibition zone around imipenem and meropenem discs impregnated with EDTA, as compared to discs without EDTA. Results: Amongst the 135 strains of P. aeruginosa isolated, 26 (19.26%) were found to be carbapenem resistant and 15 (11.11%) were found to be MBL producers. There was high prevalence of MBL enzyme amongst multidrug resistant P. aeruginosa. Conclusion: Study indicates that, surveillance for the detection of MBL is necessary. The rapid dissemination of MBL producers is worrisome and necessitates the implementation of proper and judicious selection of antibiotics especially carbapenem
References
2. Supriya Upadhyay, Malay Ranjan Sen, Amitabha Bhattacharjee. Presence of different beta-lactamase classes among clinical isolates of Pseudomonas aeruginosa expressing AmpC beta-lactamase enzyme. J Infect Dev Ctries 2010; 4(4): 239-242.
3. Manchanda V, Singh NP, (2008) Occurrence and detection of AmpC b-lactamase, among Gram negative clinical isolates using a modified three-dimensional test at Guru Teg Bahadur Hospital, Delhi, India. J Antimicrob Chemother 51:415-418.
4. Tanzinah Nasrin, Md. Shariful Alam Jilani, Lovely Barai, J. Ashraful Haq, (2010) Metallo-β-Lactamase Producing Pseudomonas species in a Tertiary Care Hospital of Dhaka City, Bangladesh J Med Microbiol 2010;04(01): 43-45.
5. Mehul S Chaudhari, Tanuja B Javdekar, Govind Ninama, Neelam Pandya, Jivraj Damor. A Study of Metallo-beta-lactamase producing Pseudomonas aeruginosa in clinical samples of SSG Hospital. National Journal of Med Res. Dec 2011; 1(2):60-63.
6. Gupta E, Mohanty S, Sood S, Dhawan B, Das BK, Kapil A. Emerging resistance to carbapenems in
a tertiary care hospital in north India. Indian J Med Res 2006; 124: 95-8.
7. Gladstone P, Rajendran P, Brahmadathan KN. Incidence of carbapenem resistant nonfermenting Gram negative bacilli from patients with respiratory infections in the intensive care unit. Indian J Med Microbiol 2005; 23 : 189-91
8. Ambler RP. The structure of beta-lactamases. Philos Trans R Soc London Bio Sci 1980; 289 : 321-31.
9. Bush K. Metallo β-lactamase: a class apart. Clin Infect Dis 1998; 27 (Suppl 1): S48-53.
10. Bush K, Jacoby GA, Medeiros A. A functional classification scheme for beta lactamase and its correlation with molecular structure. Antimicrob Agents Chemother 1995; 39: 1211-33.
11. Walsh TR, Toleman MA, Poirel L, Nordmann P. Metallo-β-lactamase: the Quiet before the Storm? Clin Microbiol Rev 2005; 18: 306-25.
12. Taneja N, Aharwal SM, Sharma M. Imipenem resistance in non fermenters causing nosocomial urinary tract infection. Indian J Med Sci 2003; 57: 294.
13. Richet HM, Mohammed J, McDonald LC, Jarvis WR. Building communication networks: international network for the study and prevention of emerging antimicrobial resistance. Emerg Infect Dis 2001; 7: 319-22.
14. Forbes BA, Sham D F, Weissfeld A S. Bailey and Scott’s diagnostic microbiology, 10th ed. New York: Mosby; 1998. P. 167-87.
15. Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing; Twenty-First Informational Supplement. CLSI document M100-S21. Wayne, PA: Clinical and Laboratory Standards Institute; 2011.
16. Yong D, Lee K, Yum JH, Shin HB, Rossolini GM, Chong Y. Imipenem-EDTA disk method for differentiation of metallo-β-lactamase-producing clinical isolates of Pseudomonas spp. and Acinetobacter spp. J Clin Microbiol 2002; 40:3798-801.
17. Ami Varaiya, Nikhil Kulkarni, Manasi Kulkarni, Pallavi Bhalekar & Jyotsana Dogra. Incidence of metallo beta lactamase producingPseudomonasaeruginosa in ICU patients. Indian J Med Res 127, April 2008, pp 398-402.
18. Lee K, Chong Y, Shin HB, Kim YA, Yong D, Yum JH. 2001. Modified Hodge and EDTA-disk synergy tests to screen metallo-β-lactamase-producing strains of Pseudomonas and Acinetobacter species. Clin Microbiol Infect. 2001; 7:88–91.
19. Sabath LD, Abraham EP. Zinc as a cofactor for cephalosporinase from Bacillus cereus 569. Biochem J 1966; 98 : 11C-3.
20. Shannon K, King A, Phillips I. Beta-lactamases with high activity against imipenem and Sch 34343 from Aeromonas hydrophila. J Antimicrob Chemother 1986; 17 : 45-50.
21. Cuchural GJ Jr, Malamy MH, Tally FP. Beta-lactamasemediated imipenem resistance in Bacteroids fragilis. Antimicrob Agents Chemother 1986; 30 : 645-8.
22. Watanabe M, Iyobe S, Inoue M, Mitsuhashi S. Transferable imipenem resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 1991; 35 : 147-51.
23. Bandoh K, Watanabe K, Muto Y, Tanaka Y, Kato N, Ueno K. Conjugal transfer of imipenem resistance in Bacteriodes fragilis. J Antibiot (Tokyo) 1992; 45 : 542-7.
24. Arakawa Y, Shibata N, Shibayama K, Kurokawa H, Yagi T, Fujiwara H, et al. Convenient test for screening metallo-b-lactamase-producing Gram-negative bacteria by using thiol compounds. J Clin Microbiol 2000; 38 : 40-3.
25. Forster DH, Daschner FD. Acinetobacter species as nosocomial pathogens, Eur J Clin Microbial Infect Dis 1998;17:73-7.
26. Gonlugur U, Bakiri MZ, Akkurt I, Efeoglu T. Antibiotic susceptibility patterns among respiratory isolates of gram negative bacilli in a Turkish University Hospital. BMC Microbiol 2004;4:32-6.
27. Yano H, Kuga A, Okamota R, Kitasato H, Kobayashi T, Inon M. Plasmid coded metallo beta lactamase (imp 6) coferring resistance to carbapenems, especially meropenam. Antimicrob Agents Chemother 2001;45:1343-8.
28. Navneeth B V, Sridaran D, Sahay D, Belwadi M R. A preliminary study on metallo beta lactamase producing Pseudomas aeruginosa in
hospitalized patients. Indian J Med Res 2002;116:264-7.
29. Shashikala, Kanungo R, Srinivasan S, Devi S. Emerging resistance to cabapenem in hospital acquired Pseudomonas infection: A cause of concern. Indian J Pharmacol 2006; 38:287-88.
30. Endimiani A, Luzzaro F, Pini B, Amicosante G, Rossolini G M, Toniolo A Q. Pseudomonas aeruginosa blood stream infections: risk factors and treatment outcome related expression of the PER-1 extended-spectrum beta-lactamase. BMC Infect Dis 2006; 6:52: available from biomedcentral.com/1471-2334/6/52.