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Abstracts: Photodynamic therapy (PDT), also known as photo-radiation therapy, phototherapy, or photo-
chemotherapy, involves the use of a photoactive dye (photosensitizer) that is activated by exposure to light of 
a specific wavelength in the presence of oxygen. The transfer of energy from the activated photosensitizer to 
available oxygen results in the formation of toxic oxygen species, such as singlet oxygen and free radicals 
which damages proteins, lipids, nucleic acids and other cellular components.PDT has wide range of 
applications in Dentistry ranging from antimicrobial chemotherapy to the diagnosis & treatment of 
premalignant and malignant conditions. Its application in Periodontics represents a novel therapeutic 
approach in the management of oral biofilms with consequent alterations in plaque homeostasis. An improved 
post surgical healing with reduced periodontal inflammation and tissue damage are the hallmarks of PDT. Its 
scope has been extended in Implantology to promote osseointegration and to prevent peri-implantitis. With 
such myriad of applications PDT has a promising future depending on the interactions between clinical 
applications and technological innovations. The paper appraises the various scopes that PDT envisages beyond 
the horizon. [ Shreedhar A  NJIRM 2014; 5(4) :72-81] 
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Introduction: Man’s eternal quest for an elixir as a 
remedy for rejuvenation has been in vogue since 
time immemorial. Photodynamic therapy (PDT) – a 
touchstone promising myriad of possibilities offers 
a non invasive and novel process in which light, 
after being absorbed by dyes, sensitizes organisms 
for visible light induced cell damage.  PDT 
combines soft laser irradiation with the application 
of toluidine blue "O" dye (TBO). Photodynamic 
therapy (PDT) can be defined as eradication of 
target cells by reactive oxygen species produced by 
means of a photosensitizing compound and light of 
an appropriate wavelength.1 It could provide an 
alternative for targeting microbes directly at the 
site of infection, thus overcoming the problems 
associated with antimicrobials.2 Allison et al. 
described PDT as a therapy that ‘‘is truly the 
marriage of a drug and a light’’.3 

 
Light has been employed in the treatment of 
disease since antiquity. In the later part of 
twentieth century it has been used in many 
different forms including phototherapy for 
neonatal jaundice, combination of psoralen 
molecules and ultraviolet molecules and ultraviolet 
A light(PUVA) in dermatology, photodynamic 
therapy and photo-detection. The use of 
photodynamic therapy for inactivating 

microorganisms was first demonstrated more than 
100 years ago, when Oscar Raab reported the 
lethal effect of acridine hydrochloride and visible 
light on Paramecia caudatum. During his study he 
demonstrated that the effect was greater than that 
of either acridine alone light alone or acridine 
exposed to light and added to paramecium. He 
discovered the optical property of fluorescence 
and concluded that it was not the light but rather 
some products of fluorescence that induced in 
vitro toxicity. He postulated that this effect was 
caused by the transfer of energy from light to the 
chemical similar to that seen in plants after 
absorption of light by the chlorophyll.1 

Photodynamic therapy for human infections is 
based on the concept that an agent (a 
photosensitizer) which absorbs light can be 
preferentially taken up by bacteria and 
subsequently activated by light of the appropriate 
wavelength in the presence of oxygen to generate 
singlet oxygen and free radicals that are cytotoxic 
to microorganisms.4 PDT has shown potential in the 
treatment of oral leukoplakia, oral lichen planus, 
and head and neck cancer.8 Photodynamic 
antimicrobial chemotherapy (PACT) has been 
efficacious in the treatment of bacterial, fungal, 
parasitic, and viral infections.9  The non-oncological 
applications of PDT include treatment of psoriasis 
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(Weinstein et al., 1991), actinic keratosis (Itoh et 
al., 2000), rheumatoid arthritis (Miyazawa et al., 
2006), and age-related macular degeneration 
(Kozaket al., 2006).The absence of genotoxic and 
mutagenic effects of PDT is an important factor for 
long-term safety during treatment. PDT also 
represents a novel therapeutic approach in the 
management of oral bio-films. Disruption of plaque 
structure has important consequences for 
homeostasis within the biofilm.10 

 
Phototargeting Oral Biofilms: Dental caries : 
Dental caries results from an ecological imbalance 
in the physiological equilibrium between tooth 
minerals and oral microbial biofilms, mainly 
supragingival plaque11. Biofilm bacteria, such as 
mutans streptococci (Streptococcus mutans and 
Streptococcus sobrinus) and Lactobacillus species, 
secrete organic acids as a by-product of the 
metabolism of fermentable carbohydrates. This 
process leads to the demineralization of tooth 
hard-tissue cavitation in its advanced stages12. 
 
This technique could offer the following benefits: 
rapid non invasive topical in vivo application of the 
drug to the carious lesion; rapid bacterial killing 
after a short exposure to light; unlikely 
development of resistance considering the 
widespread generic toxicity of reactive oxygen 
species; and confined killing by restricting the field 
of irradiation and the inherently short diffusion 
radius of reactive oxygen species. Several 
laboratory studies have demonstrated (using 
toluidine blue O) the susceptibility of cariogenic 
bacteria, either in the planktonic phase 13,14,15,16 or in 
the biofilm phase 17, 18, 19 to photodynamic therapy. 
Rose Bengal, a fluorescent dye that is used to study 
liver function, has been employed to target S. 
Mutans species in suspension20, and disulfonated 
aluminium phthalocyanine (AlPcS2) has been 
shown to be effective against suspensions 21 and 
biofilms of cariogenic bacteria22 as well as against 
humansupragingival dental plaque microbes in the 
planktonic phase23,24. The synergistic effect of 
erythrosine, a dental plaque-disclosing agent 
currently in clinical use, and photodynamic 
therapy, induced bacterial cell killing of >1.5 log10 
in S. mutans biofilms in vitro25, 26. 
 

Oral candidiasis: Candida albicans becomes a 
serious opportunistic infectious agent in 
immunocompromised patients27. C. albicans can 
grow as biofilms on oral mucosal surfaces28 and 
prosthetic devices29. Antifungal treatment with 
agents such as nistatin and miconazole often 
induce resistance, severely limiting their ability to 
eradicate fungal biofilms, so that recurrent 
infection occurs30. Numerous in vitro studies by 
Souza SC et al,  So CW et al, Munin E et al etc  have 
shown that photodynamic therapy is effective in 
killing Candida in planktonic31-38 and biofilm39,40 
phases using methylene blue,33,34, 36-38 toluidine 
blue O36,38,40 photofrin39 , tionin38, porphyrins32 , 
phthalocyanine35,38  and malachite green36. Topical 
treatment of oral candidiasis by photodynamic 
therapy may be an alternative to traditional 
antifungal drug therapy, especially in patients with 
human immunodeficiency virus (HIV) for whom 
persistent infection is a major problem41. Further 
animal studies should establish a protocol for 
successful targeting of candidiasis lesions, which 
will then be tested in human studies. Recently, it 
has been shown that laser irradiation alone 
exerted antifungal effects in vitro36, 37. These data 
are supported by a human study, in which a 
reduction of inflammation was observed on the 
palate of subjects with denture stomatitis after five 
consecutive treatments with laser irradiation42. The 
presence of endogenous chromophores within C. 
albicans that may contribute to photosensitization 
requires further investigation.  
 
Periodontal Diseases: Biofilms that colonize tooth 
surfaces and epithelial cells lining the periodontal 
pocket ⁄ gingival sulcus (subgingival dental plaques) 
are among the most complex biofilms that exist in 
nature. These biofilms include a subset of selected 
species from more than 700 bacterial species or 
phylotypes43-45 that can lead to periodontal 
diseases (gingivitis or periodontitis). Mechanical 
removal of the periodontal biofilms is currently the 
most frequently used method of periodontal 
disease treatment. Antimicrobial agents are also 
used, but biofilm species exhibit several resistance 
mechanisms46-48 and maintaining therapeutic 
concentrations of antimicrobials in the oral cavity 
can be difficult49. Photodynamic therapy has been 
suggested as an alternative to chemical 
antimicrobial agents to eliminate subgingival 
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species and treat periodontitis50. The application of 
methylene blue-mediated photodynamic therapy 
in clinical studies using either the Periowave 
Treatment kit or the Helbo Blue treatment kit is as 
follows: methylene blue is applied directly in the 
dental pockets for 60 s followed by exposure to red 
light via a fiberoptic probe for 60 s per pocket or 
per tooth (10 s per site, six sites in total). In the 
majority of these studies, photodynamic therapy as 
an adjunct to scaling and root planing did not show 
any beneficial effects over scaling and root planing 
alone. It is possible that short exposures to light 
may be responsible for the lack of clinical benefits. 
Several studies have shown that periodontal 
bacteria are susceptible to photodynamic therapy 
in planktonic cultures38,51-54  plaque scrapings55,56 
and biofilms57,58 using methylene blue53,55,57 
toluidine blue O,51,52,55-57,59  phthalocyanine,56,57 

hematoporphyrin HCl,57 hematoporphyrin ester57 
and a conjugate between poly-L-lysine and the 
photosensitizer chlorin e654.  Biofilms were also 
exposed to methylene blue (25 or 50 lg ⁄ ml) and 
the same light conditions as their planktonic 
counterparts.  
 
Photodynamic therapy produced approximately 
63% killing of bacteria in the planktonic phase, 
whereas in biofilms derived from the same plaque 
samples the effect of light was reduced (31% 
killing). The reduced susceptibility of bacteria to 
photodynamic therapy in the biofilm may be 
related to the distinct and protected phenotypes 
expressed by them once they attach to the tooth, 
which are still carried by dental plaque bacteria in 
suspension. The reduced susceptibility of biofilms 
to photodynamic therapy may be related to the 
inactivation of methylene blue68, the existence of 
biofilm bacteria in a slow growing or starved state69 
and to certain phenotypes expressed by biofilm 
species when they attach to the agar surface. The 
reduced susceptibility of biofilms to photodynamic 
therapy may also be attributed to the reduced 
penetration of methylene blue, an explanation that 
has been introduced previously70. It has been 
suggested, in studies of model systems, that water 
channels can carry solutes into or out of the depths 
of a biofilm, but they do not guarantee access to 
the interior of the cell clusters71 whose diameter 
may range from 20 to 600 lm72. Biophysical means, 
such as ultrasonic irradiation73 and electric fields74, 

known as the bioacoustic effect and the bioelectric 
effect, respectively, have been employed to 
enhance the efficacy of various agents in killing 
biofilm microorganisms. These methodologies, 
however, require an application time of up to 48 h 
in order to achieve significant bacterial killing75,76, 
which would preclude their clinical use. Recently, it 
has been showed that the application of 
photomechanical waves also enhances the 
methylene blue concentration and the penetration 
depth into multispecies biofilms evolved from 
human saliva in vitro.77  The hypothesis was that 
photomechanical waves enhance fluid forces at the 
biofilm–bulk water interface that deform the 
microcolonies of bacteria and the matrix, so that 
fluid movement occurs. The synergistic action of 
photomechanical waves and photodynamic 
therapy has the potential to contribute to the 
development of a new system for the topical, rapid 
and non-invasive treatment of periodontitis. In vivo 
studies with experimentally induced periodontits in 
rats have shown suppression of periodontal 
pathogens and a reduction of periodontitis 
following photodynamic therapy with toluidine 
blue O.60,80  The authors also found significant 
reductions of periodontal bone loss in diabetic83 
and immunosuppressed84 rats using toluidine blue 
O. Several clinical studies have been carried out to 
investigate the effects of adjunctive photodynamic 
therapy in human periodontitis.  In all of these 
studies, methylene blue was the photosensitizer. 
Two of these studies reported significant clinical 
improvement (reduced probing pocket depth and 
bleeding on probing, increased clinical attachment 
level) when photodynamic therapy was used along 
with scaling and root planing.85-6   
 
New Frontiers In Oral Antimicrobial 
Photodynamic Therapy: The role of photodynamic 
therapy as a local treatment of oral infection, 
either in combination with traditional methods of 
oral care, or alone, arises as a simple, nontoxic and 
inexpensive modality with little risk of microbial 
resistance. Lack of reliable clinical evidence, 
however, has not allowed the effectiveness of 
photodynamic therapy to be confirmed. Studies 
have been performed using different treatment 
conditions and parameters with insufficient clinical 
and microbiological findings. The reduced 
susceptibility of complex oral biofilms to 
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antimicrobial photodynamic therapy may require 
the development of novel delivery and targeting 
approaches. Evolving therapeutic strategies for 
biofilm-related infections include the use of 
substances designed to target the biofilm matrix, 
non growing bacteria (persister cells) within 
biofilms and ⁄ or quorum sensing.47 The use of 
bacteriophages87 and naturally occurring 
orsynthetic antimicrobial peptides88 may offer the 
possibility of bacterial targeting without the 
emergence of resistance. Recently, the advantages 
of targeted therapy become more apparent, and 
the use of light alone, antibody–photosensitizer 
and bacteriophage–photosensitizer conjugates or 
non antibody based targeting moieties, such as 
nanoparticles, are gaining increasing attention.  
 
Phototherapy: In some instances, application of a 
photosensitizer may not be required because 
photosensitizers occur naturally within some 
microbial species. This is particularly true of the 
oral black-pigmented species. According to Soukos 
NS et al it has been shown that broadband light 
ranging from 380 to520 nm was able to achieve a 
threefold reduction in the growth of P. gingivalis, P. 
intermedia, Prevotella nigrescens and Prevotella 
melaninogenica in dental plaque samples obtained 
from human subjects with chronic periodontitis.89 
In this study, the presence and amounts of 
endogenous porphyrins in black-pigmented 
bacteria were estimated and analysis of bacteria in 
dental plaque samples was performed by DNA–
DNA hybridization for 40 taxa before and after 
phototherapy. Inactivation of black-pigmented 
bacteria by visible light has also been reported by 
investigators like Feuerstein O et al, Fux CA et al, 
Henry CA et al,etc.89-95 Black-pigmented bacteria, 
such as P. intermedia, P. nigrescens and P. 
melaninogenica, are associated with gingivitis as 
reported by Danielsen B et al, Goodson JM, 
Tanner96-8 and may be responsible for the 
increased bleeding tendency of long-
standinggingivitis.97 Prevotella species have also 
been recognized as potent producers of volatile 
sulfur compounds on the dorsum of the tongue99 

and were detected at high numbers in tongue 
samples obtained from subjects with oral 
malodour.100-01 In another study by Sterer N et al, 
human salivary microflora was exposed to blue 
light of 400–500 nm and a reduction in the levels of 

volatile sulfide compounds was found, together 
with a selective inhibitory effect on the gram-
negative bacteria, suggesting that it may be 
possible to use light to treat oral 
malodour.200Additionally, Moore WE et al have 
reported that black-pigmented bacteria, such as P. 
gingivalis and P. intermedia, are associated with 
the development of periodontitis102-3 and Meurman 
JH et al have reported it to be involved in the 
pathogenesis of cardiovasculardisease.104 Studies 
by Chiu B et al, Haraszthy VI et al, Taylor-Robinson 
D have reported black-pigmented bacteria to be 
detected in atheroma plaques105-7 and this may 
have an impact on the reduction of bleeding in 
gingivitis, the reduction of inflammation in 
periodontitis and the cure of oral malodor. In all of 
the cases, exposure to visible light may result in 
the gradual suppression of black-pigmented 
bacteria that will lead to a shift of the microbial 
composition towards a new one associated with 
health. This novel technique may offer the 
following advantages compared with other forms 
of periodontal therapy (scaling, mouth washes and 
surgery): (i) rapid and painless application of light; 
(ii) selectivity in its effect; (iii) full penetration of 
dental plaque by light; (iv) limited penetration of 
light into gum tissue; (v) absence of phototoxicity 
to human cells; (vi) no effects on taste; and (vii) 
possible clinical and microbiological benefit with 
minimal impact on natural microbiota.  
 
Antibody-Targeted Antibacterial Approaches 
Using Photodynamic Therapy: Antibodies 
conjugated with photosensitizers have been used 
to target Staphylococcus aureus.108-9 Selective 
killing of P. gingivalis was achieved in the presence 
of Streptococcus sanguinis (previously S. sanguis) 
or in human gingival fibroblasts using amurine 
monoclonal antibody against P. gingivalis 
lipopolysaccharide conjugated with toluidine blue 
O.110 In two studies by Embleton ML et al and Hope 
CK et al bacteriophages were used as vehicles to 
deliver the photosensitizer tin(IV) chlorinee6 to the 
surface of S. aureus strains.111-2 This led to 
approximately 99.7% killing of microorganisms112 

The combination of pulsed laser energy and 
absorbing gold nano particles selectively attached 
to the bacterium for killing of microorganisms is a 
new technology that was introduced recently as 
suggested in studies by Zharov VP et al,113 Gold 
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nanoparticles are promising candidates for 
application as photothermal sensitizers and can 
easily be conjugated to antibodies. The surface of 
S. aureus was targeted using 10- to 40-nm gold 
nano particles conjugated with anti-protein 
antibodies.113 The energy that was absorbed by 
nano particles during irradiation was quickly 
transferred through non radiative relaxation in to 
heat accompanied by bubble-formation 
phenomena around clustered nano particles, 
leading to irreparable bacterial damage. Antibody-
targeted approaches using photodynamic therapy 
have been most frequently focused on the 
treatment of malignant diseases. The therapeutic 
potential of these approaches for bacterial 
targeting is based on their ability to demonstrate 
minimal damage to host cells. Therefore, these 
approaches should be further explored in vitro and 
in animal studies. 
 
Conclusion: The potential applications of 
photodynamic therapy to treat oral conditions 
seem limited only by our imagination. Applications 
appear not only the common oral diseases of 
dental caries and periodontal disease but also the 
conditions of oral cancer, periimplantitis, 
endodontic therapy, candidiasis and halitosis. Low 
toxicity and rapidity of effect are qualities of 
photodynamic therapy that are enviable. It is now 
the time to demonstrate clear evidence of clinical 
efficacy and applicability. At this time in history, it 
is difficult to know where light will lead us in the 
oral cavity but the promise is clear and the 
opportunities are visible. 
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