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ABSTRACT 

Predictive modeling presents a transformative opportunity to enhance HIV self-testing (HIVST) uptake across Sub-
Saharan Africa (SSA). While machine learning techniques such as Random Forest (RF) and Classification and 
Regression Trees (CART) offer powerful tools for identifying high-risk populations and optimizing HIVST 
distribution, their adoption in public health remains limited. This Viewpoint examines how stigma, economic 
constraints, and urban-centric data biases hinder the integration of predictive analytics into HIVST and argues for 
equity-driven implementation strategies. The authors  argue that leveraging predictive modeling requires an 
ethical, community-driven approach that prioritizes fairness, transparency, and real-world applicability. Without 
inclusive implementation strategies, predictive analytics risks reinforcing disparities rather than reducing them.This 
article presents a strategic framework for integrating machine learning into HIVST policy and practice while 
addressing concerns around data bias, public trust, and stakeholder engagement. By bridging the gap between 
artificial intelligence (AI) and global health equity, predictive modeling can serve as a catalyst for achieving UNAIDS’ 
2030 goals for broad, equitable HIV testing access. 
 
Keywords: Predictive modeling, HIV self-testing (HIVST), Public health intervention, Sub-Saharan Africa, Machine 
learning, Equity in healthcare. 
GJMEDPH 2025; Vol. 14, issue 2 | OPEN ACCESS 
2*Corresponding author: Felix Emeka Anyiam , Faculty of Health Sciences, Durban University of Technology, Durban 4001, South Africa, 
felixemekaanyiam@gmail.com; 2. Maureen Nokuthula Sibiya ,Vice-Chancellor and Principal’s Office, Mangosuthu University of Technology, 
511 Mxenge Highway, Umlazi 4031, South Africa; 3. Olanrewaju Oladimeji ,Department of Epidemiology and Biostatistics, School of Public 
Health, Sefako Makgatho Health Sciences University, Pretoria 0208, South Africa  
 
 
Conflict of Interest—none | Funding—none 
 
© 2025 The Authors | Open Access article under CC BY-NC-ND 4.0 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Original Articles 

 
 Felix Emeka Anyiam et al.                                                                                                                                             

2 www.gjmedph.com Vol. 14, No.2, 2025                                                                                                                                                            ISSN# 2277-9604 
 
 

 
INTRODUCTION 
Sub-Saharan Africa (SSA) remains central to the 
global HIV epidemic, carrying a disproportionate 
share of cases worldwide [1]. The persistent 
challenge of ensuring broad and equitable access to 
HIV testing demands a radical shift from traditional 
strategies. HIV self-testing (HIVST) offers a powerful 
tool to decentralize testing, increase uptake, and 
reduce stigma—especially among populations 
disproportionately affected by HIV, such as men who 
have sex with men (MSM), female sex workers 
(FSWs), adolescents, and those facing economic 
hardship [2, 3]. Yet, despite its transformative 
potential, HIVST adoption remains uneven, 
hindered by systemic barriers that continue to 
marginalize the most vulnerable. Current public 
health strategies often fail to proactively address the 
socio-cultural and economic dynamics that shape 
HIVST uptake. Stigma remains a formidable 
deterrent, preventing individuals from testing 
despite the confidentiality HIVST provides [4]. 
Economic constraints—exemplified by affordability 
challenges in Botswana [5], and the urgent need for 
culturally tailored strategies in Nigeria [6] - further 
highlight the inadequacy of one-size-fits-all 
approaches. The time for reactive, broad-spectrum 
interventions is over. This Viewpoint argues that 
predictive modeling must be at the core of a new, 
data-driven HIVST strategy      that prioritizes equity, 
precision, and community trust over generic, 
blanket approaches. By analyzing socio-cultural and 
economic patterns, predictive models can identify 
blind spots in current outreach efforts, mitigate 
stigma-driven disparities, and optimize resource 
allocation [7]. However, technology alone is not a 
silver bullet. Machine learning techniques, 
particularly Classification and Regression Trees 
(CART) and Random Forest (RF) offer advanced 
capabilities for understanding HIVST behaviors [8]. 
Yet, their success hinges on how they are designed, 
whom they serve, and whether they reflect real-
world inequities. Too often, predictive models are 
built on urban-centric, health facility-driven datasets 
that exclude rural and marginalized populations, 
thereby reinforcing disparities instead of resolving 
them [9, 10]. If predictive modeling is to 
revolutionize HIVST implementation, its 
deployment must be intentional, ethical, and 

people-centered. We must move beyond theoretical 
efficiency and focus on practical, equity-driven 
solutions that ensure every individual—regardless of 
geography, income, or identity—has access to HIV 
testing. This article makes the case for integrating 
machine learning into HIVST policy and practice in a 
way that not only enhances efficiency but actively 
dismantles exclusionary barriers. 
 
Ensuring Equity and Accuracy in HIVST Predictive 
Modeling 
While machine learning techniques offer powerful 
insights for optimizing HIVST, their effectiveness is 
contingent on the quality and inclusivity of training 
datasets. Nisa et al. [11] demonstrated that RF-
based models could accurately predict high-risk HIV 
populations, yet Van Der Ploeg et al. [12] cautioned 
that machine-learning approaches can be data-
intensive and may underperform when datasets are 
limited. Norori et al. [13] further highlighted the risks 
of bias in training datasets, emphasizing that urban-
centric data could lead to the underrepresentation of 
rural populations, thereby diminishing the 
effectiveness of predictive modeling in HIVST 
outreach. To mitigate these challenges, CART and 
RF stand out as the most viable options for HIVST 
predictive modeling [14]. These models excel at 
processing large, heterogeneous datasets while 
maintaining interpretability and earning stakeholder 
trust, both of which are critical aspects of public 
health decision-making [15, 16].  Their ability to 
capture intricate socio-demographic patterns makes 
them the optimal choice for ensuring targeted 
HIVST interventions that are  scientifically robust 
and socially inclusive. While logistic regression is 
widely used for its simplicity and interpretability, it 
often fails to capture non-linear and interactive 
effects, limitations that machine learning models 
such as Random Forests can address  [17]. Similarly, 
Naïve Bayes, though efficient in high-dimensional 
spaces, relies on independence assumptions that do 
not always hold in real-world settings [18]. k-Nearest 
Neighbors (KNN), while effective in clustered 
datasets, struggles with large-scale, noisy data, 
limiting its application in diverse SSA populations 
[19]. The superior performance of RF in HIV-related 
studies is well-documented, with models achieving 
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high precision (96.15%), recall (100%), and AU-ROC 
values (0.989), making RF the most reliable tool for 
balancing accuracy, precision, and interpretability 
[20].  These findings reinforce the importance of 
prioritizing CART and RF, ensuring that predictive 
modeling for HIVST is not only effective but also 
aligned with the realities of implementation across 
SSA. Leveraging Predictive Modeling to Enhance 
HIVST Outreach:Predictive modeling offers a 
transformative approach to HIVST by enabling 
targeted, data-driven interventions that improve 
efficiency and accessibility. Models such as CART 
and RF excel in revealing intricate data patterns, 
particularly in diverse and complex environments 
like SSA [9, 12]. For instance, RF models can pinpoint 
high-risk subpopulations with low HIVST uptake, 
ensuring that testing resources are allocated where 
they are needed most [11]. The potential impact 
extends beyond static predictions. These models 
can inform dynamic and adaptive distribution 
strategies, identifying informal settlements where 
traditional health interventions are limited. A study 
demonstrated how RF successfully identified such 
settlements using high-resolution imagery and 
spatial indicators with 91% accuracy—a 
methodology that could be replicated for targeted 
HIVST outreach [21]. Moreover, predictive modeling 
fosters real-time adaptability in HIVST distribution. 
In SSA’s resource-limited settings, models can 
anticipate fluctuations in demand and adjust supply 
chains proactively [22]. By integrating demographic 
and behavioral data, predictive analytics can help 
public health programs establish responsive, 
demand-driven HIVST distribution networks, 
reducing logistical inefficiencies and ensuring 
continuous availability of self-test kits in high-risk 
areas. While these capabilities present a compelling 
case for leveraging machine learning in HIVST, 
equitable implementation remains critical. 
Predictive analytics must not become another top-
down, exclusionary approach—its success depends 
on contextual alignment with local health systems 
and community engagement. This calls for a hybrid 
approach that combines technological innovation 
with human-centered public health strategies, 
ensuring that predictive modeling enhances—not 
replaces—existing HIV response efforts. 
 

Ethical Imperatives for Equitable HIVST Predictive 
Modeling 
Predictive modeling has the potential to redefine 
HIVST outreach, yet its implementation must be 
guided by ethical principles that ensure fairness, 
inclusivity, and social responsibility. One of the 
primary concerns is data bias, as models such as 
CART and RF heavily depend on training datasets 
that may not adequately represent the populations 
they aim to serve. If these models are predominantly 
trained on urban-centric data, they risk excluding 
rural and underserved communities, reinforcing 
preexisting inequities instead of addressing them 
[13, 23].To prevent predictive modeling from 
becoming a barrier rather than a bridge, an equity-
driven approach must be integrated into the design, 
validation, and deployment of these models. This 
requires: 
Inclusive Data Collection – Ensuring representation 
from rural, marginalized, and low-income 
populations by integrating data from community 
health networks, informal healthcare providers, and 
grassroots organizations. This broader data scope 
enhances accuracy and fairness in predicting HIVST 
uptake [24]. Studies show that predictive models 
trained on heterogeneous datasets perform 
significantly better at identifying high-risk 
subpopulations, reducing disparities in HIVST 
uptake [25, 26].  
Participatory Model Development – Engaging local 
communities in model refinement through focus 
groups, stakeholder workshops, and user feedback 
mechanisms ensures that predictive models reflect 
the lived realities of those they are designed to serve 
[27]. Research has demonstrated that community 
participation in AI-driven health interventions leads 
to higher adoption rates, as it fosters trust, cultural 
relevance, and usability [28]. In HIV prevention 
programs, participatory approaches have been 
linked to greater intervention uptake and 
sustainability [29]. 
Transparent and Explainable AI – CART and RF offer 
interpretability advantages over black-box 
algorithms, making them ideal for transparent 
decision-making in public health [30]. When AI-
generated insights are communicated clearly to 
health professionals, policymakers, and community 
leaders, it enhances trust in HIVST interventions. A 



Original Articles 

 
 Felix Emeka Anyiam et al.                                                                                                                                             

4 www.gjmedph.com Vol. 14, No.2, 2025                                                                                                                                                            ISSN# 2277-9604 
 
 

study on AI ethics in healthcare found that 
explainability fosters accountability, reduces 
resistance to new technologies, and improves 
implementation success [31]. 
Ethical Validation Practices – Rigorous testing must 
be conducted to identify and mitigate biases before 
model deployment. This includes cross-
demographic testing to ensure that no subgroup is 
systematically excluded from accurate predictions.      
Ueda et al. emphasize the importance of testing 
machine learning models across diverse 
demographic groups to avoid bias and promote 
equitable performance in real-world healthcare 
settings [32]. Without such measures, machine 
learning models risk entrenching the very disparities 
they seek to address. 
 
Fostering Community Participation in Predictive 
Modeling for HIVST 
Ensuring fairness, inclusivity, and contextual 
relevance in predictive modeling requires active 
community engagement throughout the model 
development process. Predictive tools should not 
operate in isolation—stakeholder collaboration is 
essential to build trust, refine model parameters, 
and ensure practical applicability. Participatory 
approaches, such as focus group discussions, key 
informant interviews, and community workshops, 
are crucial in integrating qualitative insights into 
data-driven decision-making.For instance, involving 
end-users—including clinicians, public health 
officials, and community stakeholders—in model 
development has been shown to enhance usability 
and foster trust in predictive analytics [33]. Without 
these interactions, predictive models risk being 
perceived as detached, reducing real-world impact 
and adoption rates. Similarly, structured feedback 
loops have been instrumental in identifying gaps in 
training data, addressing biases, and improving 
overall model accuracy. A study on machine learning 
applications in healthcare found that continuous 
user feedback enables the refinement of feature 
sets, ensuring models remain adaptable to diverse 
settings [34]. In socio-culturally diverse settings like 
SSA, community engagement is a necessity, not an 
option. Predictive models that do not account for 
localized cultural dynamics risk misrepresenting 
high-risk populations and reinforcing exclusion 

rather than mitigating it.      User-centered design 
and stakeholder engagement can help surface 
equity concerns in predictive modeling, including 
risks to marginalized populations, and inform how 
models are communicated and used in care settings 
[35]. Furthermore, multi-stakeholder engagement is 
key to ensuring equity in predictive modeling. A 
position paper on machine learning ethics highlights 
that inclusive model development not only improves 
agility and accuracy but also aligns interventions 
with the real needs of diverse healthcare users [36]. 
This holistic, participatory framework ensures that 
predictive modeling transitions from being purely 
algorithm-driven to community-centered, resulting 
in better health outcomes, stronger trust, and more 
sustainable HIVST adoption. 
 
Harnessing Predictive Modeling for Public Health 
Impact 
The successful integration of predictive models in 
SSA underscores their transformative potential in 
strengthening HIV prevention and self-testing 
strategies. In Nigeria, Bayesian predictive modeling 
has been employed to estimate HIV prevalence and 
optimize testing approaches [31]. Similarly, in South 
Africa, machine learning has helped improve 
treatment retention by identifying dropout 
predictors in HIV care  [37]. In Kenya, predictive 
modeling combined with SMS-based reminders has 
enhanced PrEP adherence among youth, a key 
demographic in HIV prevention [38]. The practical 
application of CART and RF models in HIV response 
has been explored beyond SSA. In Pakistan, RF was 
used to predict future HIV acquisition risks among 
high-risk populations, analyzing socio-
demographic, behavioral, and biological factors. The 
model achieved 82% accuracy, outperforming 
traditional classifiers and demonstrating its ability to 
guide targeted testing, counseling, and treatment 
interventions [11].  While these models have 
demonstrated significant value in optimizing HIV 
responses, challenges such as data quality, equitable 
inclusion of marginalized populations, and 
technological constraints necessitate ongoing 
refinement. Table 1 summarizes the specific 
applications of predictive modeling techniques in 
HIVST interventions, showcasing their role in 
enhancing targeted outreach and optimizing 
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resource allocation across SSA [11, 30, 39]. 

 
Table 1. Predictive Modeling Applications for HIVST in Sub-Saharan Africa 

Application Area Predictive Model Used Description Public Health 
Implications 

Targeted Kit Distribution RF The model identifies 
regions with low HIVST 
uptake and high HIV 
prevalence, guiding 
where kits should be 
allocated for maximum 
impact. 

This approach helps 
efficiently allocate 
resources to high-need 
areas [39]  

Real-Time Demand 
Prediction 

CART The model predicts areas 
with fluctuating HIVST 
demand to support better 
stock management and 
timely replenishment. 

It helps reduce stock outs 
and optimize supply 
chains [30] 

Demographic Risk 
Profiling 

CART and RF Socio-demographic data 
are analyzed to 
categorize individuals by 
their likelihood of using 
HIVST, enabling more 
personalized outreach. 

This supports tailored 
educational interventions 
and outreach efforts [11]. 

Outreach Optimization Mixed Methods Approach Predictive modeling is 
combined with qualitative 
feedback to identify 
stigma-related barriers 
and customize outreach 
strategies. 

This integration improves 
trust, engagement, and 
the accuracy of public 
messaging [40] 

 
Legend: CART - Classification and Regression Tree; 
RF - Random Forest 
The insights generated from predictive models shift 
HIVST strategies from broad, generalized 
approaches to precise, evidence-based 
interventions (as illustrated in Table 1). In SSA, 
where resources are limited, predictive analytics can 
pinpoint high-burden areas with low HIVST uptake, 
enabling targeted deployment of mobile health 
units, local pharmacy distribution, or digital self-
testing campaigns. 
Early trials in Nigeria and South Africa support this 
potential, showing that data-driven outreach 
significantly improves HIVST engagement among 
underserved populations [31, 37]. Recent findings 

from Kenya further demonstrate how integrating 
predictive modeling with SMS-based interventions 
has led to increased engagement among youth, a 
critical demographic in HIV prevention [38]. These 
successes highlight the need for continued 
investment in AI-driven public health solutions, 
ensuring that predictive modeling is ethically 
implemented, community-driven, and inclusive of 
marginalized populations. 
Moving forward, public health leaders must: 
• Establish ethical AI guidelines that prioritize 

equity and inclusivity. 

• Develop collaborative frameworks between 

data scientists, public health experts, and 
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community representatives to refine 

predictive models. 

• Invest in public awareness initiatives to 

ensure that AI-driven HIVST interventions 

are understood and trusted by the 

populations they aim to serve. 

 
Evaluation Metrics for Predictive Modeling 
While predictive modeling enhances HIVST 
outreach, rigorous evaluation is essential to ensure 
models are reliable, actionable, and equitable. RF 
and CART models must be assessed using standard 
performance metrics that validate their ability to 
accurately identify high-risk populations and 
optimize intervention strategies. Key evaluation 
criteria include accuracy (correct classifications), 
AU-ROC (risk group distinction), precision (true 
positive identification), recall (sensitivity to high-risk 
cases), and F1-score (balance between precision and 
recall) [9, 12, 13].Among these, the F1-score is 
particularly crucial, as it balances false positives and 
false negatives, ensuring that predictive models 
neither overlook high-risk individuals nor 
misallocate resources. In HIVST outreach, an RF 
model achieving an AU-ROC above 0.95 and a high 
F1-score signals strong predictive capability, 

effectively guiding targeted testing and resource 
allocation [9]. 
Beyond numerical validation, transparency and 
interpretability are non-negotiable. CART models, 
known for their decision-tree structure, must be 
assessed for their ability to clearly justify predictions 
and inform real-world interventions. Reporting 
these metrics strengthens confidence in predictive 
models, promotes their continuous refinement, and 
safeguards ethical AI adoption in public health. 
Future research must prioritize evaluation metrics 
not only to enhance scientific rigor but also to ensure 
predictive modeling translates into measurable 
health impact. Without this accountability, machine 
learning in HIVST risks becoming a theoretical 
exercise rather than a transformative tool for 
equitable healthcare. Transforming Predictive 
Modeling into Actionable Strategies: Figure 1 
illustrates how predictive modeling is integrated into 
the implementation of HIVST programs across SSA. 
The diagram highlights key stages, including data 
collection, predictive modeling processes, and 
actionable insights for program design. This 
visualization complements the narrative by 
providing a clear framework for understanding the 
workflow and its impact on targeted HIVST 
distribution and outreach optimization. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Integrating Predictive Modeling with HIVST Implementation in Sub-Saharan Africa 
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Bridging the Gap between Predictive Analytics 
and Policy 
For predictive modeling to be effective in HIVST, it 
must be embedded within national HIV strategies 
and community health frameworks. Governments 
and health organizations should prioritize regulatory 
frameworks that ensure transparency and 
accountability in AI-driven health interventions. 
Moreover, predictive insights should not exist in 
isolation. They must be accompanied by on-the-
ground community engagement to address socio-
cultural determinants of HIV testing behavior. For 
instance, a model may predict low HIVST uptake in a 
certain region, but without qualitative community 
insights, the underlying cause—whether stigma, 
misinformation, or economic barriers—remains 
unaddressed. A blended approach, integrating 
predictive analytics with ethnographic research and 
participatory health planning, is essential to making 
these models actionable. 
 
Conclusion 
HIV self-testing in SSA is at a pivotal moment. 
Predictive modeling offers a powerful tool for 
improving HIVST outreach, but its impact depends 

on ethical implementation, equitable data 
strategies, and strong community engagement. 
Without these safeguards, predictive modeling risks 
perpetuating rather than reducing health disparities. 
This Viewpoint advocates for a human-centric, 
culturally responsive, and ethically grounded 
approach to AI in public health. Integrating 
predictive analytics with community-led 
interventions and policy frameworks can drive more 
equitable and effective HIVST adoption. Future 
research should explore comparative assessments of 
alternative modeling techniques, such as logistic 
regression, SVM, and hybrid machine learning, to 
determine their effectiveness across diverse 
epidemiological settings. Addressing biases in 
training data and involving local communities in 
model validation will be essential for ensuring fair 
and impactful predictive modeling in HIV 
prevention. By advancing methodological rigor and 
interdisciplinary collaboration, predictive analytics 
can be a cornerstone in achieving UNAIDS’ 2030 goal 
of universal HIV testing access while upholding data 
fairness and public health inclusivity [41]. The time 
to act is now! 
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RF Random Forest 
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