Prevalence of HIV, HBsAg, HCV and Syphilis in Voluntary & Replacement donors at a Tertiary care Blood bank

Nidhi M Bhatnagar*, Rajeshkumar V Sonani**, Maitrey D Gajjar***

*Associate Professor, **Resident Doctor, ***Professor and Head, Department of Immunohaematology & Blood Transfusion(IHBT), B. J. Medical College & Civil Hospital, Ahmedabad- 380016, Gujarat, India

Abstracts: <u>Background & Objectives:</u> To study the prevalence of HIV, HBsAg, HCV & syphilis in blood donors. <u>Methods:</u> The seroprevalence of HIV, HBsAg & syphilis among voluntary and replacement donors was analyzed for a period of 16 years (January 1996 to December 2011) and for HCV for a period of 10 years and 7 months (June 2001 to December 2011) at Department of Immunohaematology & Blood Transfusion, Civil Hospital, Ahmedabad. In this period, a total of 2, 81,665 donors were tested, out of which, 2, 00,903 (71.3%)were replacement donors and 80,762 (28.7%)were voluntary donors. HIV, HBsAg & HCV were tested by ELISA method and syphilis by RPR method. <u>Results:</u> Total seropositivity was 1071(0.380%) for HIV, 2900 (1.102%) for HBsAg, 599 (0.306 %) for HCV & 1522(0.540 %) for syphilis. In replacement donors, seropositivity for HIV was 891(0.443%), HBsAg was 2299(1.144%), HCV was 437(0.330%) & syphilis was 1130(0.562%). In voluntary donors, seropositivity for HIV was 180(0.222%), HBsAg was 601(0.744%), HCV was 162(0.257%) & syphilis was 392(0.485%). <u>Conclusion:</u> The present study indicates that higher seroprevalence rates for HIV, HBsAg, HCV & syphilis were observed in replacement donors as compared to voluntary donors.[Sonani RV et al NJIRM 2012; 3(4) :34-37]

Key Words: Blood donors, Infectious markers, Replacement, Voluntary

Author for correspondence:Rajeshkumar V Sonani, Address: 2/A, Vrundavan Colony, Near Ghevar Complex, Shahibaug, Ahmedabad-380004, Gujarat, India.Email : rajsonani18@gmail.com

Introduction: Blood transfusion is a lifesaving procedure but it can cause serious transfusion transmitted infections, if not tested properly for the presence of micro-organisms. Provision of safe blood is of paramount importance and its responsibility lies solely with blood transfusion services and to ensure this, only non- infected blood is given to any patient¹.

The infections transmitted through blood can be divided into two groups:

Exogenous: Those which are introduced into a blood unit from an external source i.e. during manoeuvring of blood unit at the time of tapping, cross-matching, supply & transfusion.

Endogenous: Those which are already present in the blood of donor.

The infectious agents known to be transmitted through blood are:

Viruses : Hepatitis B virus. Hepatitis C virus, Human Immunodeficiency virus (HIV I & II), Hepatitis D virus, Human Papilloma virus, Human T cell leukemia virus I & II, Human Parvo virus, Epstein Barr virus, Cytomegalo virus, Herpes Virus(HSV I & HSV II)

BACTERIA	PARASITES
Spirochetes – Treponema Pallidum Salmonella Brucella abartus Yersinia enterocoliticus	Plasmodium species (Malaria) Trypanosoma cruzi (Chagas disease) Toxoplasma gondi L. Donovani Microfilaria Babesia Microti

In recent years, numerous infectious agents (found worldwide) have been identified as potential threats to blood supply. These newly discovered agents namely transfusion transmitted virus(TTV), SEN-V(SEN virus), Human Herpes virus-8(HHV-8), Hepatitis G virus(HGV), West Nile virus and prions present a unique challenge in assessing the possible risk they may pose to the safety of blood & blood products².

Mandatory screening tests in India are:

- HBsAg.
- Antibody to Treponema Pallidum.
- Antibody to HIV I & II.

- Antibody to Hepatitis C virus.
- Malarial Parasite³.
- Other optional tests are:
- Antibody to Cytomegalovirus
- Antibody to Plasmodium falciparum
- Antibody to HTLV I

Screening tests are usually directed at the antibody to infectious agent rather than antigen for the agent, except in the case of Hepatitis B Virus. Presence of specific antibody is suggestive of persistent or chronic infection.

Screening for HCV infection was made mandatory in January 2001 by Drug Controller General of India. Present study was carried out to assess the prevalence of infectious markers in blood donors, difference if any in voluntary and replacement donors and comparison of the results with other Indian studies.

Materials And Methods: The aims and objective of this study was to compare the sero-reactivity rates of HIV, HBsAg, HCV & Syphilis in voluntary and replacement donors.

A total of 2,81,665 blood units were collected from blood donors (Voluntary & Replacement) during the period from January 1996 to December 2011 at Dept of IHBT, Blood Bank, Civil Hospital, Ahmedabad, both voluntary and replacement. The replacement donors came to the centre to donate blood in replacement to the blood required for the patients admitted in the civil hospital. They were family members, close relatives or friends of the patients. Voluntary donors donated blood in the department or in the blood donation camp. Care was taken to exclude professional donors by taking appropriate history and examination of the donors.

All samples were screened for HIV, HBsAg, HCV (All 3 using Enzyme Linked Immunosorbent Assay-ELISA) & syphilis (using non-treponomal tests).All the reactive samples were repeated in duplicate before labelling them as a sero-positive & the units found sero-positive on repeat testing were discarded.

Results : During the study period (January 1996 to December 2011), 2,81,665 donors were screened. Out of this, 80,762(28.6%) were Voluntary donors and 2,00,903 (71.4%) were Replacement donors. HCV was analyzed for 10 years and 7 months (June 2001 to December 2011). A total of 1,95,182 donors were screened. Out of this, 62,804(32.17%) were voluntary and 1,32,378 (67.83%) were replacement.

Table 1 shows the distribution of blood donors (Voluntary & Replacement) at Blood Bank, Civil hospital, Ahmedabad.

YEAR	TOTAL	REPLACEMENT	VOLUNTARY
1996	15,149	13,090 (86%)	2,059 (14%)
1997	15,498	12 <i>,</i> 469 (80%)	3,029(20%)
1998	15,499	12,382(80%)	3,117 (20%)
1999	16,367	11,350 (69%)	5,017 (31%)
2000	17,433	13,551(78%)	3,882(22%)
2001	17,481	14,535(83%)	2,946(17%)
2002	17,232	12,046(70%)	5,186(30%)
2003	17,166	14,136(82%)	3,030 (18%)
2004	16,242	12,790(78%)	3,452 (22%)
2005	14,719	11,601(79%)	3118 (21%)
2006	15,545	11,115 (71%)	4430(29%)
2007	18,499	14,558(79%)	3,941(21%)
2008	20,502	11 <i>,</i> 414(56%)	9,088(44%)
2009	20,582	11,224(54%)	9,358(46%)
2010	20,300	12,067(59%)	8,233(41%)
2011	23,451	12,580(54%)	10,871(46%)
Total	2,81,665	2,00,903 (71%)	80,762(29%)

Discussion : As seen in Table I, replacement donors constitute the largest group of blood donors in our set up. Sometimes, in practice, a replacement donor could even be a professional donor who is paid by the patient's relatives, which is possibly the reason for increase in sero-reactivity rates in replacement donors. The proportion of voluntary donors shows an increase during the study period,

though not consistent which is comparable to other studies $^{\!\!\!\!^4}\!\!.$

As seen in Table II, the seroprevalence of HIV in our study is 0.38%. The seroprevalence of HIV in

Indian scenario has been reported between 0.2% to $1.0\%^{4,5,6,7,8,9}$. It was also observed that the years where voluntary donations were more, seroreactivity of HIV was low.

Table II shows the trends in seropositivity	r of HIV, HBsAg, HCV, & syphilis in blood donors in our se الم	t up.
---	--	-------

	HIV Rea	ctive		HbsAg Reactive			RPR Rea	ictive		HCV Reactive		
	Total	V	R	Total	V	R	Total	V	R	Total	V	R
	%	%	%	%	%	%	%	%	%	%	%	%
1996	87	7	80	193	14	179	45	3	42			
	0.574	0.339	0.611	1.274	0.679	1.367	0.297	0.145	0.320			
1997	74	6	68	164	11	153	35	2	33			
	0.477	0.198	0.545	1.058	0.363	1.227	0.225	0.066	0.264			
1998	55	3	52	151	15	136	25	4	21			
	0.354	0.096	0.419	0.974	0.481	1.098	0.161	0.128	0.169			
1999	61	8	53	135	20	115	26	2	24			
	0.372	0.159	0.466	0.824	0.398	1.013	0.158	0.039	0.211			
2000	69	4	65	138	23	115	79	3	76			
	0.395	0.103	0.479	0.791	0.592	0.848	0.453	0.077	0.560			
2001	111	20	91	146	21	125	15	2	13	25	2	23
	0.634	0.670	0.626	0.835	0.712	0.859	0.085	0.067	0.089	0.228	0.083	0.268
2002	73	13	60	199	43	156	102	11	91	32	7	25
	0.423	0.250	0.498	1.154	0.829	1.295	0.592	0.212	0.755	0.185	0.134	0.207
2003	89	9	80	287	51	236	41	3	38	118	23	95
	0.518	0.297	0.565	1.671	1.683	1.669	0.238	0.099	0.268	0.687	0.759	0.672
2004	57	13	44	227	66	161	26	1	25	123	35	88
	0.351	0.376	0.344	1.391	1.912	1.258	0.160	0.028	0.195	0.757	1.013	0.688
2005	57	14	43	153	26	127	33	0	33	32	7	25
	0.387	0.449	0.370	1.039	0.833	1.094	0.224	0.00	0.284	0.217	0.224	0.215
2006	45	5	40	161	37	124	93	6	87	30	3	27
	0.289	0.112	0.359	1.035	0.835	1.115	0.598	0.135	0.782	0.192	0.067	0.242
2007	55	11	44	200	28	172	180	25	155	41	4	37
	0.297	0.279	0.302	1.081	0.710	1.181	0.973	0.634	1.064	0.221	0.101	0.254
2008	68	19	49	193	50	143	404	167	237	36	13	23
	0.331	0.209	0.429	0.941	0.550	1.252	1.970	1.837	2.076	0.175	0.143	0.201
2009	58	20	38	182	62	120	221	87	134	15	4	11
	0.281	0.213	0.338	0.884	0.662	1.069	1.073	0.929	1.193	0.072	0.042	0.098
2010	56	10	46	165	54	111	121	50	71	47	21	26
	0.275	0.121	0.381	0.812	0.655	0.919	0.596	0.607	0.588	0.231	0.255	0.215
2011	56	18	38	206	80	126	76	26	50	100	43	57
	0.238	0.165	0.302	0.878	0.735	1.001	0.324	0.239	0.397	0.426	0.395	0.453
Total	1071	180	891	2900	601	2299	1522	392	1130	599	162	437
	0.380	0.222	0.443	1.102	0.744	1.144	0.540	0.485	0.562	0.306	0.257	0.330

	HIV Reactive			HbsAg Reactive			RPR Reactive			HCV Reactive		
	Total	V	R	Total	V	R	Total	V	R	Total	V	R
	%	%	%	%	%	%	%	%	%	%	%	%
Present study	0.38	0.22	0.44	1.10	0.74	1.14	0.54	0.48	0.56	0.30	0.25	0.33
Garg et al	0.44	0.27	0.46	3.44	2.57	3.52	0.22	0.12	0.23			0.33
Sharma et al	0.3			0.99			0.66			0.4		
Nanu et al	0.55			2.4	0.52					1.49		
Singh et al	0.8	0.8	0.8	1.8	1.2	1.9	2.7	1.3	3.0	0.5		

Table III shows the comparison of seroprevalence of HIV, HBsAg, HCV & syphilis in our set up with other Indian studies.

The seroprevalence of HBsAg in our study is 1.10% which is much less than in other Indian studies. Seroprevalence of HBsAg in various other Indian studies has been shown to range between 1.86% to 4.0%^{5,10,11}. The seroprevalence of VDRL in our study is 0.54% which is comparable with other studies^{4,5,6,7}. The seroprevalence of HCV in our study is 0.30%. Indian studies show a range between 0.3% to 1.4%^{4,6,7,10}. Studies in India and worldwide have reported a higher seroprevalence of transfusion transmitted diseases in replacement donors as compared to voluntary blood donors.

Conclusion: From the present study, it is concluded that there should be a drive to increase voluntary donations by widespread propaganda to minimize the risk of blood transfusion transmissible diseases. More so, repeat voluntary donations would ensure the repeated testing / screening of a donor for all these diseases which would reduce all probabilities of transmitting these diseases. Hence, stress should be laid on recruiting voluntary non-remunerated repeat donors.¹²

References:

1. Zarine S, Bharucha et al. In :Training Module for Medical Officers, Transfusion Medicine (Part I & II). 301-304,166-168.

2. Kaur P, Basu S. Transfusion transmitted infections: Existing and emerging pathogens. Journal of Postgraduate Medicine 2005;51/2: 141-151.

3. Drug and Cosmetic Rules 1945. Schedule F : Part XII B. In : Requirements for the functioning and operation of blood bank and/or preparation of blood components. Govt of India, Ministry of Health and Family Welfare.2005 ; 278 4. Sharma RR, Cheema R et al. Prevalence of markers of transfusion transmissible diseases in voluntary and replacement blood donors. Natl Med J India 2004;17: 19-21.

5. Garg S, Mathur DR, Garg DK. Comparison of seropositivity of HIV, HBV, HCV and syphilis in replacement and voluntary blood donors in western India. Indian J Pathology & Microbiology 2001;44: 409-412.

6. Nanu A, Sharma SP, Gupta R. Infectious markers for transfusion transmissible infections in North Indian voluntary and replacement blood donors: Prevalence and trends in 1989-1996. Vox Sang 1997; 73: 70-73.

7. Mathai J, Sulochana PV et al. Profile of transfusion transmissible infections and associated risk factors among blood donors of Kerela. Indian J Pathology & Microbiology 2002; 45: 319-322.

8. Kakkar N, Kaur R, Dhanoa J. Voluntary donors – need for a second look. Indian J Pathlogy & Microbiology 2004;47:381-383.

9. Singh B, Kataria SP, Gupta R. Infectious markers in blood donors of East Delhi – prevalence and trends.Indian J Pathology & Microbiology 2004;47:477-479.

10. Chaudhary N, Ramesh V, Saraswat S, Naik S. Effectiveness of mandatory transmissible diseases screening in Indian blood donors. Indian Journal of Medical Research 1995;101:229-232.

11. Srikrishna A, Sitalakshmi S, Damodar P. How safe are our blood donors? Indian J Pathology & Microbiology 1999;42: 411-416.

 National Blood Policy, New Delhi: National AIDS Control Organisation, Ministry of Health and Family Welfare, Government of India 2003 June; 12.